
2 Datasets and Methodology 

3 Preliminary results 1 Background
Crop phenology provides essential information for monitoring and modeling
crop growth dynamics and productivity. A warming climate has been widely
reported in most regions worldwide over the past decades. Climate projections
suggest that this changing trend would even accelerate in the future. The
impact of historical climate change on crop phenology has been well
investigated using multiple methods, such as crop/ecosystem models, climate
observations, and remote sensing imagery, from site to global scales. However,
it remains uncertain how crop phenology shifts would respond to changing
climate conditions under various climate scenarios.

This study proposed an innovative approach, which combines machine
learning (eXtreme Gradient Boosting), remote sensing-based crop phenology
detecting, and climate projections, to quantify potential shifts in crop
phenology dynamics. The overarching objectives are to (1) analyze future
changes in temperature and precipitation from GFDL-ESM2M model under
the RCP 4.5 and 8.5 scenarios in the contiguous United States during 2021-
2099; (2) predict four future corn phenological stages (planting, silking,
maturity, and harvesting dates); (3) evaluate the potential impacts of climate
variability/change on crop phenology under various scenarios; and (4) analyze
the potential vulnerability of Kentucky crops considering predicted phenology
dynamics.

Figure 2. Average temperature and accumulated precipitation during corn growing season in the 
US from 2021 to 2099

4 Summary
• An improved approach that incorporates remote sensing data and a 

machine learning algorithm was evaluated by comparing with RS-
based phenology and USDA crop reports. 

• Future climate scenario (RCP8.5) shows that over the corn growing 
season from 2021 to 2099, the mean air temperature would increase at 
a rate of 0.05 ºC/year in the US and Kentucky. The accumulated 
precipitation would increase (0.07mm/year) in Kentucky but decrease 
(-0.38mm/year) in the US.

• The predicted future corn phenology dynamics in the US and 
Kentucky show that all four corn phenological stages might advance 
during 2021 to 2099. The changing trends of corn phenology would be 
more evident in Kentucky than in the US. 

The datasets in this study include 1) North America crop phenology product (annual, 
500m, 2008-2016) (Yang et al., 2020); 2) Crop Distribution Data: Cropland Data Layer 
(CDL, annual, 30m, 2008-2019); and 3) USDA survey datasets (2008-2019); 4) GFDL-
ESM2M coupled climate model (CMIP5) (daily, 1/24 degree, 2008-2099)

3.3  Evaluation of predicted phenological stages at the state level 
and in the US during 2017 - 20203.1  Future climate change under RCP 8.5 during 2021-2099

3.2  Evaluation of predicted phenological stages at the pixel level 

2.2 Methodology

2.1  Datasets

Xtreme Gradient Boost (XGBoost) is a machine learning algorithm that implements an 
optimized gradient boost technique over decision or regression trees. In this study, we 
used the regression model to predict crop phenological stages. During the gradient 
boosting ensemble model processing, regression trees were trained iteratively to predict 
residual errors of previous trees and are then added together. A set of predictor features 
and the corresponding target labels were used to drive the XGBoost algorithm. We 
extracted three temperatures (maximum, minimum, and average temperature) and 
precipitation variable as the features. The target labels are the four corn phenological
stages (planting, silking, maturity, and harvesting dates). 

Figure 4. Evaluation for predicted corn phenological stages at the pixel level

We evaluated the predicted corn phenological stages against a remote sensing-
based approach at the pixel level. 

Figure 3. Average temperature and accumulated precipitation during corn growing season in 
Kentucky from 2021 to 2099

Future average air temperature and accumulated precipitation during corn 
growing season were analyzed from 2021 to 2099. 
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2.3 Flow work

3.4  Changing trends of corn phenological stages in the US and 
Kentucky 

Figure 5. Changing trends of corn phenological stages in the US and Kentucky during 
2021 - 2099

• Features 
e.g, T, Precipitation
• Labels
e.g., Planting date

INPUTS PROCESSING

XGBoost
model

OUTPUTS

• Phenological
predictions 

Stages Planting dates Silking dates Maturity dates Harvesting dates

RMSE (days) 4.33 5.94 19.84 18.79

MAE (days) 3.30 4.28 17.71 17.24

𝐫𝐫 0.54 0.63 0.20 0.49

N (States) 60 60 60 60

Mean values (DOY)
US _report 139 212 269 302

Mean values (DOY)
ML_prediction 137 206 251 284

Trend = - 0.38mm/year
P < 0.05

Trend = 0.05°C/year
P < 0.05
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Figure 1. Schematic diagram of the method to predict future crop phenology 
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