Bioinformatics Study of the Plant Polyadenylation Complex University of Lichun Zhou and Arthur G. Hunt Kentuckv Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546

Neve, Patel et al. 2017

- (1) We found that the WD-containing domain is highly conserved and subject to purifying selection.
- (2) In contrast, the C-termini are much more divergent and seem to be under positive selection.

Contact Information: Lichun Zhou: PhD student lzh289@uky.edu Arthur G. Hunt: Professor aghunt00@uky.edu

Methods and Results

Conclusion

Future works:

factors in plants.

Reference:

- iv. FY is the plant ortholog of WDR33. The FY C-terminal domain has two PPLPP motifs that interact with another protein, FCA.
- The FY-FCA interaction is important for flowering time but not for overall mRNA polyadenylation
- vi. -> the C-terminal domain has specialized functions

How does the C-terminal domain evolve? Is it under positive selection? Negative se

(1) In future work, we will expand this project to include all polyadenylation

1. Neve, J., et al., *Cleavage and polyadenylation: Ending the message expands gene regulation*. Rna Biology, 2017. **14**(7): p. 865-890. 2. Simpson, G.G., et al., FY is an RNA 3 ' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 2003. **113**(6): p. 777-787.

election? Neutrally?	
S	
150 	
300 I	350 I
PPLPP 512S	
Q	
48 P,451 A,512 553 N,655 Q	

